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Heat transfer from a circular cylinder by 
acoustic streaming 
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Division of Engineering, Brown University, Providence, R.I. 02912 

(Received 7 March 1967) 

An analysis is described for convection from a circular cylinder subjected to 
transverse oscillations relative to the fluid in which it is immersed. The analysis 
is based upon use of the acoustic streaming flow field. It is assumed that the fre- 
quency involved is sufficiently small that the acoustic wavelength in the fluid is 
much larger than the cylinder diameter, and that there is no externally imposed 
mean flow across or along the cylinder. Solutions are presented which are 
appropriate for a wide range of Prandtl number, and the cases of small and of 
large streaming Reynolds number are distinguished. The analysis compares 
favourably with experiments when the influence of natural convection is small. 

1. Introduction 
Substantial improvements in such processes as heat exchange, sublimation, 

drying, dissolution and so on have been brought about by the use of pulsations 
or vibrations imposed upon the fluid. Investigations intended to clarify the 
mechanisms by which the improvements are brought about have led to  con- 
flicting conclusions. A review of the subject was given recently by Richardson 
(1967). It has become clear that there is no single, universal explanation which 
can be invoked, but that there are a few distinguishable mechanisms. One of the 
configurations which has been used extensively in experiments is that of a 
horizontal circular cylinder immersed in a fluid. Studies have been made with 
relative oscillations between the cylinder and the fluid in both the axial direction 
of the cylinder and transversely to the cylinder. In  this paper, attention is con- 
centrated upon the effects of oscillations which are transverse to the cylinder. 
Further, consideration is restricted to the cases where no flow occurs in the ab- 
sence of vibrations or oscillations except that caused by natural convection. 

It has been known for many years that oscillating flows can generate steady, 
secondary flows in the vicinity of solid surfaces. The b s t  mathematical solution 
of the problem of streaming motion around a circular cylinder was obtained by 
Schlichting ( 1932) by techniques of laminar boundary-layer theory. This solution 
predicted that there would be two distinct regions of streaming in each quadrant 
around the cylinder; this consists of one region next to the cylinder (sometimes 
called the d.c. boundary layer), and an outer streaming in the region radially 
further from the axis. The form of the motion is illustrated in a streamline dia- 
gram in figure 1 for horizontal oscillation of a circular cylinder in an infinite 
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fluid. For the purpose of illustration, the inner streaming region has been exag- 
gerated in size. In  Schlichting’s analysis the d.c. boundary-layer thickness is 
proportional to the as .  boundary-layer thickness, (v/w)*, sometimes designated 
as &.. It is to be noted that this length scale is independent of the amplitude of 
oscillation, and depends solely upon the transport properties of the fluid and the 

- 
direction of oscillation 

FIGURE 1. Streamlines of the steady streaming motion induced by transverse oscillations 
of a circular cylinder. The inner and outer streaming motions have opposite rotation. The 
radial extent of the inner streaming has been greatly exaggerated from the typical scale 
in boundary-layer flow so that the motion can be seen clearly. 

frequency of oscillation. When the frequency of oscillation is reduced, or the 
kinematic viscosity of the fluid is increased, so that the a.c. boundary-layer 
thickness exceeds about one-tenth of the cylinder diameter, it is no longer appro- 
priate to analyse the flow with laminar boundary-layer theory and the full 
Navier-Stokes equations must be used. An analysis of the flow of this type was 
presented by Holtsmark, Johnson, Sikkeland & Skavlem (1954), who showed that 
the flow field was qualitatively similar to that obtained by boundary-layer 
theory with the directions of streaming maintained in the same sense in each 
quadrant, but in which the inner streaming layer became larger than predicted 
by boundary-layer theory and in which the streaming velocities were also notably 
greater. An experimental investigation by Raney, Corelli & Westervelt (1954) 
showed that the size of the inner streaming layer departed systematically from 
the values predicted by laminar boundary-layer theory as the ratio of the a.c. 
boundary -layer thickness to the cylinder diameter was increased. In  these 
investigations of the secondary motion known as acoustic streaming, analysis 
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and experiment alike were restricted to the situations where no heat or mass 
transfer occurs from the cylinder. 

Some evidence has been presented which supports qualitatively the hypothesis 
of convection by acoustic streaming. In  a recent series of observations of local 
heat transfer, Richardson (1964, 1966) found that, with a horizontal heated 
cylinder placed in horizontal and vertical transverse standing sound fields, local 
changes in heat transfer occur when the sound intensity is well below that for 
which significant changes in overall transfer have been found. The local changes 
were in different directions at different locations around the cylinder and the 
corresponding overall change was small enough to have gone unnoticed in the 
earlier studies on overall heat transfer determined by energy balance techniques. 

It is the purpose of this paper to discuss the mechanics of convection from a 
heated cylinder subjected to transverse oscillations or placed in a sound field, 
to present an analysis for convection by ordinary acoustic streaming and to 
show that there is promising agreement with the appropriate experimental 
results. 

2. The fluid motion in perspective 
It is possible to obtain acoustic wavelengths which are large or small compared 

with the diameter of the cylinder, by choice of the fluid in which a cylinder is 
immersed and of the frequency of oscillation. The discussion here is restricted 
to those circumstances in which the wavelength is large compared with the 
diameter of the cylinder. 

The oscillations can be described, in part, in terms of the ratio of the displace- 
ment amplitude of the oscillation to the cylinder diameter. It is possible to have 
oscillations in which the displacement amplitude is very small compared with the 
cylinder diameter, so that in the primary flow there is no regular systematic 
displacement of the fluid across the cylinder in such a way that the convection 
of heat from the cylinder has an obvious ‘vehicle’. However, as noted earlier, 
there arises in such situations a steady, secondary flow by means of which regular 
convection currents pass over the surface of the cylinder and are able to effect 
a net transfer of enthalpy from the region immediately surrounding the cylinder. 
For cases of practical interest it is irrelevant whether the cylinder is held sta- 
tionary and the fluid oscillated relative to it (by creation of a velocity antinode 
in a standing sound field), or vice versa. Analytically it can be shown that the 
two cases are equivalent when the fluid is incompressible. 

Unfortunately, experimental results are complicated by the presence of 
buoyancy effects. In  practical terms, the influence of natural convection can be 
so great that the oscillations are felt as little more than a perturbation upon the 
natural convection flow except at  very high intensities. This fact considerably 
confuses the picture when experimental results are examined, and it is necessary 
to introduce a further dimensionless parameter by which the relative significance 
of natural convective forces to the forced convection associated with the oscilla- 
tions can be measured. A suitable dimensionless parameter is a ratio of the 
Grashof number to the square of the Reynolds number. It is common experience 
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in the accounting of convection that measurements tend to correspond to analysis 
in which natural convective effects are neglected in the limit as the ratio tends to 
zero, and it will be found that this experience is repeated here. 

The measurements which have been made span large ranges of the dimension- 
less variables a/d and (v/o)*/d.  The results of measurements where u/d > 1 can 
be accounted for satisfactorily on the basis of expressions used to represent heat 
transfer under the corresponding steady conditions. It is on the data for measure- 
ments with aid < 1 that attention must be concentrated, since it is for these that 
no satisfactory accounting has yet been made. It is shown below that ordinary 
acoustic streaming plays a dominant role in this. 

- 
- Direction of oscillation 

FIGURE 2. Co-ordinate system on the cylinder for calculation of the isothermal acoustic 
streaming at small streaming Reynolds numbers. Similar co-ordinates are used in other 
calculations, except that the origin for z is taken a t  the forward stagnation point for the 
relevant flow. 

It is necessary first to discuss some details of the fluid motion. For the present 
work, the case of progressive sound fields is excluded, and it is considered that the 
cylinder is either at  a velocity antinode of a transverse standing sound field or is 
oscillated transversely. The basic boundary-layer analysis for periodic flows in 
the absence of a mean flow, following Schlichting (1932), has been described in 
several books; the most extensive discussion was given by Stuart (1963) in a 
recent Fluid Motion Memoir (Rosenheadjl963). It can be shown that if (aa.Jd) is 
small, and also U,/wd is small (where Urn coswt is the instantaneous relative 
velocity of cylinder and fluid) then the first-order oscillatory motion and the 
second-order steady streaming motion can be calculated from the unsteady 
boundary-layer approximation of the Navier-Stokes equations. The co-ordinate 
system is illustrated in figure 2. The first term in the stream function can be 
written 

where Uo(x) is the velocity outside the boundary layer and locally parallel to the 
wall of the cylinder, 7 = x(w/2v)4, and 

(1) $1 = (2v /4~uo(x ) f , (T )  exp (iW, 

fi(r) = - *(I- i) [I-  exp ( - (1 + i ) ~ ) ]  + 7. (2) 
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The second term in the stream function involves terms of zero frequency and of 
a frequency twice that of the primary flow. The second term can be written 

When this is substituted into the boundary-layer equation, and the known 
result for 

(4) 

is introduced, a solution for the steady streaming can be found 
f20 = l& - $71 - 1 e-27 - 3e-7 cos 11 - e-7 sin 11 - 1 e-)I sin 7, 8 2 211 

which satisfies the boundary conditions 

( 5 )  I fi0 = fLo = 0 at  7 = 0, 
fLo remains finite as 7 -+ 00. 

At large values of 7, fLo = - 8, and this demonstrates that there is a flow outside 
the boundary layer and locally parallel to the surface of velocity 

3 UodUo u = 
4 w  d x *  

This velocity plays an important role in the analysis of thermal convection. 
There is also a steady component of velocity normal to the surface, given by 

This has maxima and minima at  the boundaries of the four quadrants, as illus- 
trated in figure 1. In these positions the flow exterior to the boundary layer is 
very similar to that found at  ideal forward or rearward stagnation points. 

The secondary motion is generated by the Reynolds stress associated with the 
primary boundary-layer flow. The magnitude of the secondary flow is independ- 
ent of the viscosity, and is of order U%lwd, which can be used to form a streaming 
Reynolds number, Re, = Uzlov.  Stuart pointed out that the original solutions 
are pertinent when this streaming Reynolds number is small, but that when the 
streaming Reynolds number becomes large a second boundary layer develops, 
at the edge of which the steady velocity component tends to zero. The thickness 
of this second boundary layer, Souter, is such that 

4 d L l t e r  = O(a/d).  (8) 
Measurements which have been made in sound fields in air, together with Mar- 
tinelli & Boetler’s (1938) measurements for a cylinder oscillating in water, are 
all for aid < 1 so that the flow field in the absence of natural convection should 
be described adequately by the analysis above, equations (1)-(7). For cylinders 
vibrated in air at  lower frequencies (yet still within the range of boundary-layer 
theory) it becomes necessary for this outer layer to be taken into account. 

3. Heat transfer by acoustic streaming 
The analysis of thermal transport by the flow described above can also be based 

upon boundary-layer theory. It is commonly possible to analyse laminar trans- 
port from isothermal surfaces by noting that, for a given body, the thermal 
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boundary-layer thickness and the velocity boundary-layer thickness are in 
constant proportion to each other, and their ratio is related to the Prandtl 
number, Pr, of the fluid. For the two cases where one layer is very large compared 
with the other, it is possible to use simple approximations for the flow field and 
thereby obtain quickly two asymptotic solutions for Pr+O and P r + a  The 
situation for the present problem is not quite as simple, since there are two 
velocity boundary-layer thicknesses to consider: the inner streaming motion 
thickness, which is of the same order as the a.c. boundary-layer thickness and 
which does not change with change in the oscillation amplitude, and the outer 
streaming thickness which decreases as the amplitude increases. 

For some cases of interest in the present investigation, the outer streaming 
layer is large enough to be considered infinite in size: then the only comparison 
to be made is between the thermal boundary layer and the inner streaming layer. 
It is reasonable to expect that the former will decrease in thickness as the ampli- 
tude increases, so that the ratio of boundary-layer thicknesses will not be con- 
stant (the positions where the streaming motion is directed radially outward are 
excluded from consideration for the present). Thus, when the amplitude of oscil- 
lation is small, the thermal boundary layer is large compared with the inner 
streaming layer, a situation more normally encountered when the Prandtl 
number is small. Here, however, it can occur even for Pr > 1.  The convection 
process is dominated by the outer streaming motion, and can be computed using 
techniques normally appropriate for Pr -+ 0. 

If the real Prandtl number is very large, the thermal boundary layer is small 
and decreases in size with increase in intensity; for sufficiently large amplitudes 
the thermal boundary layer is much smaller than the inner streaming motion, 
and convection can be computed using the normal techniques for P r + m  This 
case should present more difficulties in analysis than usual, in that heat must be 
transferred from the surface to the inner streaming fluid and then from the inner 
streaming (which has closed streamlines) to the outer streaming. Fortunately, 
this case can only be encountered when the real Prandtl number is very large; 
there are only two investigations which correspond to this, involving mass 
transfer at  very large Schmidt numbers (Rao, Raju & Rao 1963; Jameson 1964) 
and these investigations were performed in a range where the ax. boundary- 
layer thickness was too large to be accounted for adequately by boundary-layer 
theory. Some results in air, water and aqueous glycerine are also somewhat with- 
in the scope of this case, as will be noted later. 

One remaining case to be considered is that where the thermal boundary- 
layer thickness is large compared with the inner streaming, but the outer stream- 
ing boundary layer is similar in size. Both the thermal layer and the outer 
boundary-layer shrink in size as the amplitude increases. Both layers vary as the 
inverse square root of the streaming Reynolds number, i.e. they vary inversely 
with the amplitude. With this situation, the boundary layers are (to a first 
approximation) in constant proportion to each other, independent of amplitude. 
For measurements made in sound fields by Fand & Kaye (1961 a)  the streaming 
Reynolds number rises to the order of 10, but for measurements involving vibra- 
tion of cylinders (e.g. Fand & Kaye 1961 b)  the streaming Reynolds number goes 
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as high as about 500. This is largely a consequence of the smaller frequency in the 
latter case. An analysis which examines this boundary-layer flow has been 
developed by Stuart (1966). 

Convection by outer streaming at small streaming Reynolds number 

The first of the three cases to be considered for boundary-layer analysis of thermal 
convection is where 

and Souter 9 &thermal' 

For this case, the convection is due essentially to the outer streaming flow, in 
which u is given by ( 6 ) .  Examination of figure 1 points out that the outer stream- 
ing motion has forward stagnation points at  the top and bottom of a cylinder if 
the primary motion is a horizontal oscillation. These points can serve as starting 
points for thermal boundary layers which are carried round for in radians to the 
separation points of the streaming motion. The function 

V,(x) = 2aw sin (x/R),  

so that the outer acoustic streaming velocity is 
3a2w x x 

u -- sin - cos - 
I -  R R R' (9) 

As noted before, with &,ermal B 8a .c . ,  the techniques for low Pr are to be used. It 
is convenient to introduce the assumption of local similarity, an assumption 
which has been given some weight by Meksyn (196l), Merk (1959) and others. 
It was shown by Evans (1962) that the conduction thickness, A4 = k/h,  with 
Pr = 0 could be found from the equation 

It is possible to obtain an exact solution for this. When the substitutions D = 

A,aw*/Ra*, 8 = 2x/R are made, and equation ( 9 )  is used, (10) becomes 
dD2 
dB 

3sin8- = ~ r - 6 0 ~ ~ 0 ~ 6 .  

It is obvious that (1 1) is satisfied by 
D = kaw*/hRa* = (n/6)*sec (x/R).  

This means that the local heat transfer coefficient around one quadrant of a 
cylinder is proportional to cos (x/R),  and if a polar diagram of the local transfer 
coefficient is constructed it resembles a 'figure eight'. This figure eight is upright 
if the oscillation is in the horizontal direction, as illustrated in figure 3. The figure 
eight will be rotated through +7r, to lie on its side, if the oscillations are in the 
vertical direction. The average heat transfer is 2/7r times the maximum, and a 
conventional dimensionless representation of the mean transfer rate is given by 
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The use of an analysis for Pr + 0 has meant that the details of the streaming 
motion inside the d.c. boundary layer have been ignored completely. The inner 
streaming motion involves velocities which are less than u1 and in the opposite 

40 60 80 100 120 14n 

Oscillation direction 
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Outer streaming Pr- 0 

FIGURE 3. Polar graphs of the local variation of heat transfer coefficient. The associated 
direction of oscillation is horizontal. The maximum values occur at the forward stagnation 
points for the corresponding streaming motions. The azimuthal variation for inner stream- 
ing is determined from (20) and for outer streaming from (12). It can be seen that the local 
heat transfer is more nearly constant at  positions near the forward stagnation points for 
the inner streaming. 

direction; the maximum inner velocity is about one-seventh the magnitude of ul. 
As the Reynolds number is increased, the conduction thickness A, becomes 
smaller, and it is necessary to take account of the inner motion. It is convenient 
to introduce an approximation, based on the following arguments: since the inner 
layer has small velocities, lies deep inside the thermal boundary layer and is very 
long compared to its thickness, such a layer transmits heat by pure conduction. 
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The inner streaming can be approximated by a pure conduction layer, the thick- 
ness of which is the thickness of the inner streaming motion (up to the dividing 
streamline). On the outside of this is the flow which gives, at  the interface (the 
dividing streamline), the heat transfer coefficient determined by the analysis 
above. Thus the conduction layer and boundary layer form resistances to heat 
in series. To the order of approximation involved it is sufficient to base the cor- 
rection factor on the average heat transfer coefficient, so that (13) and (14) 
become 

%/Re! = 1*76Prd/{l+ 1*66(u/d)Pd} (15) 

and =/Reosc = 0-718Pr*(3v/w)*/R{l+ 1*66(u/d)Pr*}. (16) 

With the restriction in the fluid-mechanical analysis that a/d < 1, the correction 
factor should be small unless the Prandtl number is large. The largest corrections 
are needed in analysing the work of Martinelli & Boelter (1938) in water, but even 
in that case the factor does not rise above 1.5. 

Convection by inner streaming 

Another case to be considered in the framework of boundary-layer analysis is 
that of very large Prandtl numbers. In the asymptotic condition, Pr-tco, 
another limiting relationship should be found. It is possible to express the wall 
shear stress as a function of x, and to use an analysis applicable for arbitrary (but 
continuous) distribution of wall shear stress with Pr  -+ co. With this analysis the 
heat transfer coefficient is determined for the difference in temperature between 
the wall and the middle region of the inner streaming; there can be further 
resistance to heat transfer across the dividing streamline where the inner flow 
adjoins the outer flow, but this is not investigated in detail here because in the 
corresponding experiments &,/d is not small and the interface region is much 
longer than the boundary layer on the wall, and each case needs to be considered 
on its merits. The estimation of the interface resistance will be discussed in com- 
parison of experiments with analysis. 

It is convenient to express the analysis in terms which permit inclusion of the 
cases where (&Jd) isnot small. This can be done by introducing a coefficient H 
into the expression for the streaming velocity gradient at  the wall: H can assume 
a value appropriate to thecorresponding ( ~ 9 ~ J d ) .  If the difference in temperature 
between the wall and the stream outside the thermal boundary layer is constant, 
and Pr --f 00, the wall gradient of the dimensionless temperature 0 is 

This is clearly the reciprocal of the conduction thickness, A4, as considered in the 
previous case. From equation (4), with the factor H introduced, the velocity 
gradient at the surface is 
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The x-dependence in (17) can be expressed as 

The indefinite integral can be reduced to a tabulated function by the substitution 
p = sin2 8, by which (19) becomes 

where BJQ, 8) is an incomplete Beta function (which is related to the binomial 
distribution function). The tables edited by Pearson (1934) span the required 
range of variables, and interpolation of the logarithms of entries is convenient. 
In  evaluating the denominator of (19) it must be recalled that 0 < 0 < T ,  and the 
integrand is an even function around 0 = &T, making the integral an odd func- 
tion; once the integral has been evaluated from 0 to frn the continuation is simple. 
The local heat transfer coefficient is a function of angle, as illustrated in figure 3. 
For a given direction of oscillation the maxima for the inner streaming transfer 
correspond to the minima of the corresponding outer streaming transfer coeffi- 
cient distribution. For the inner streaming the average transfer coefficient is 
approximately 0.745 of the maximum local value. 

When the analysis is carried through to render an equation for the average 
heat transfer in terms of the mean oscillation Reynolds number, (awdlv 4 2 ) ,  the 
result is 

The heat transfer for flows outside the boundary-layer range can be described 
quite well by (21), especially since H does not vary very rapidly. 

The calculation of laminar heat transfer a t  large Prandtl numbers can be 
extended down to moderate Prandtl numbers; the heat transfer can then be 
expressed in terms of a series in descending powers of the Prandtl number. On 
this basis, the right-hand side of (21) is to be divided by a series of which the 
leading terms are (1 + O(R/a)*Pr-*}. 

An analysis for the inner streaming convection was attempted by Jameson 
(1964). As an approximation he dropped the term v(au/ay) from the boundary- 
layer energy equation so that the coefficient which he obtained is unreliable. It 
will be seen later that the result obtained here agrees much better with Jameson's 
experiments than his own analysis. 

%% = 1.36Re~~,Pr~(a/R)'sHB. (21) 

Regions of application of inner and outer streaming analysis 

When the thermal boundary-layer thickness has increased in thickness to about 
one-half of the inner streaming region it runs into the thermal boundary layer 
which straddles the separating streamline, and it is no longer practicable to 
consider the problem by methods which are simply extensions of those used for 
Pr-tco. This means that for any (&a.c,Jd) and Prandtl number there is a lower 
limit on (a /d)  for which convection could be analysed on an inner streaming 
model as sketched above. Similarly, for the analysis based on the outer streaming, 
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when the temperature change across the conduction layer becomes as large as 
that in the outer streaming motion the scheme of analysis described earlier be- 
comes inadequate; for any (&+) and Prandtl number there is an upper limit 
on (a /d)  for which the simple outer streaming analysis is applicable. 

Low limit for laminar convection by inner 
acoustic streaming, Pr = 0.72 

\ 

log ( d d )  

3 1  

1 

-2 -1 1 - 3  

1% ( L . / d )  L g t l  limit for laminar 
convection by outer 
acoustic streaming, P? = 0.72 

-2  t 
FIGURE 4. Bounds on the analy8es for convection by inner and outer acoustic streaming 
for Pr = 0.72. For an increase in the Prandtl (or Schmidt) number, the two lines should 
both be lowered in the (a /d )  scale by a factor of (Pr/0.72)*. The lines at moderate S,,Jd 
move down from the values for the thin boundary layer limit in accordance with the mea- 
surements of Raney et al. (1954). 

The approximate positions of the lower bound for inner streaming analysis 
and the upper bound for outer streaming analysis are shown in figure 4 for Pr = 

0.72. For increases in Prandtl number, the bounds should be moved downwards 
by a factor of Prt. For flow in the boundary-layer analysis region, the bounds 
remain constant, but as (8.Jd) exceeds about 0.1 the inner streaming region 
becomes larger and the bounds both become progressively smaller. In  illustrating 
this effect in figure 4 use was made of the measurements of Raney et al. (1954). 

Fortunately there are no measurements which lie in the region between the 
two bounds, for which it would be necessary to develop a separate analysis. 
The only further analysis required before comparison is made with experiment 
is a modification of the outer streaming analysis appropriate for measurements 
where the streaming Reynolds number is large. 

Convection by outer streaming at large Reynolds number 
When the measurements in air at  small ax. boundary-layer thicknesses are 
considered it is clear that a large range of streaming Reynolds numbers is covered. 
When the streaming Reynolds number is large the outer streaming motion is 
confined to a boundary layer. This will give a smaller heat transfer rate than the 
corresponding case at small streaming Reynolds number, unless the Prandtl 
number is large enough for the thermal boundary to be considerably smaller than 
the boundary layer of the outer streaming motion. In some transitional range of 
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Reynolds numbers, between small and large values, the convection expected 
must decrease progressively from the low Reynolds number limit to the large 
Reynolds number limit. 

Stuart (1966) presented a convenient analysis for the outer streaming boundary 
layer at  large streaming Reynolds numbers. The flow warrants space and velocity 
transformations of its own; these can be chosen as 

25 = x/R, 5 = zaw/d(wv)*, 

V,([) = 3sin36 and $ ( E , < )  = $zo/u(wv)*. (22) 1 
Stuart demonstrates that the boundary -layer equation to be solved is 

When the outer flow boundary is considerably thicker than the a.c. boundary 
layer (to which the inner streaming is comparable in size), it  is reasonable to use 
the outer behaviour of the Schlichting streaming solution as the inner boundary 
condition of the outer boundary layer, i.e. to put 

9 = x(<), 4 = o at 5 = 0, (24) ac 
where the thickness of the inner streaming motions is ignored and where 

which is a transformed equivalent of (6). The outer boundary condition is 

A solution to (23) can be sought in the form 

4 = Y ( 5 )  + &(L 5)  + e2g,(5, C) + * * * - (27) 

The arbitrary quantity E is an escalating order parameter such that, after (27) 
has been substituted in (23), equations containing terms of the same order can 
be separated and solved successively. This process leaves y( 6) undetermined, but 
when the functions gl, gz, . . . are substituted back into (27) with a set equal to 
unity an ordinary differential equation for y is found, and a series solution 

the solution for y can be written 

and for #a: 



Heat transfer from a circular cylinder 349 

The leading term for the u-component of velocity is found as 

a$,/ag = Xe-7’5. (32)  

(i@,/ag) = 0 at 5 = 0 for n > 1, and the velocity corrections which these #n 
introduce relative to (32) have their largest magnitude at finite g. AS such, they 
have a smaller influence in the computation of convection than they would if 
their magnitudes were finite a t  5 = 0. Thus (32 )  is an acceptable approximation 
for use in estimating heat convection. Moreover, in the vicinity of a forward 
stagnation point 

is an exact solution of the equation. For a circular cylinder, m = 2 4 3 .  With this 
relation, it is possible to estimate the heat transfer in the stagnation region by 
standard techniques. The boundary-layer energy equation can be integrated 
numerically for Pr = 0.72 to yield a value of 0.462. A further estimate can be 
found, which is an explicit function of Prandtl number, by the Meksyn-Merk 
technique. The results of these methods are in close agreement, as might be 
expected, and should be compared with the value of hR(3v/w)*/ka obtained when 
Re, is small; this value is (0.72)i (2/7r)*, i.e. 0.685. It is seen immediately that at  
this Prandtl number, the heat transfer is significantly reduced at  large Re, in 
the regions where the outer streaming flow has forward stagnation points. 

It is desirable to calculate the local heat transfer distribution around the 
cylinder from the stagnation points to the separation points when Re, is large. 
For the corresponding case when Re, is small, it was found that the conduction 
thickness, k/h,  is proportional to sec(z/R). It may be expected that a similar 
dependence upon ( x / R )  would be found for large Re, if the local value of l/y’ also 
corresponds to see (x/R), since this would maintain a constant ratio of boundary- 
layer thicknesses around the cylinder. If, however, y‘ remained effectively con- 
stant around the cylinder, the local ratio of the thermal boundary-layer thickness 
to the velocity thickness would progressively increase, and this would lead to 
local heat transfer coefficients which are smaller than cos ( z /R)  times the stag- 
nation point value. The actual situation lies somewhere between these extremes, 
but with the present state of knowledge of the flow field it is difficult to determine 
it precisely. The difficulty lies in the convergence of the series for y‘, derived from 
equation (29). It will be sufficient for comparison with experiments presently 
available to observe that an upper limit, at  large Re,, for Pr = 0-72 is 

a$/ag = m2[e-mc (33)  

NuR 1 +0.95-  Re0,,(3v/w)*Pr* = 0.484. 
- ( :I/ (34 )  

4. Comparison with experiments 
The analyses described in the previous section do not take any account of 

natural convection. The latter is always present to some degree in laboratory 
experiments. To compare analysis and experiment, it  is sometimes necessary 
to extrapolate the observed behaviour to try to eliminate the influence of natural 
convection effects. Such extrapolation is not necessary in every case here for the 
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basic agreement between analysis and experiment to be established; it is required 
principally for the sets of measurements made in air with small boundary-layer 
thicknesses. 

Convection by outer streaming at small streaming Reynolds numbers 
The smallest streaming Reynolds numbers are found in the investigations a t  
higher frequencies in air; these include the measurements of Fand & Kaye 
(1961 a )  and Lee & Richardson (1965). In  these investigations natural convection 
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FIUTJRE 5. Comparison of analysis for convection by outer streaming at small s t r e a d g  
Reynolds numbers with experiment. The ‘target’ derived from analysis is shown aa a 
diamond-shaped point. To avoid crowding, some data points have been omitted. Lee & 
Richardson (1965): 645, 0 ;  627, 0; Fand & Kaye (1961a); 1101, 0;  1496, f ;  2116, A ;  
2942, 0; 3378, 0 ;  4872, x . 

had significant effects; indeed, the investigations might be considered as studies 
principally of natural convective flow perturbed by sound fields rather than vice 
versa. From equation (16), it  is expected that the quantity 

Reosc Pr4 (3vIw)i 

attains the value of 0-718 in the limit as Grashof number tends to zero. This 
quantity is plotted as a function of the ratio of Grashof number to the square of 
the oscillation Reynolds number in figure 5. It can be seen clearly in this graph 
that the data do indeed tend to the vicinity of the expected value in the limit. This 
provides affirmation of the analysis for a considerable variation in frequency. 

Convection by inner streaming 
Measurements which qualify exceptionally well for analysis by inner streaming 
are the mass transfer measurements of Jameson (1964); benzoic acid cylinders 
were oscillated in a glycerol-water solution, entailing a Schmidt number of 
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about 3 x 10’. These measurements were made in a region where the inner stream- 
ing flow is larger in extent than that predicted by boundary-layer analysis. When 
the interface area between inner and outer streaming is relatively large compared 
with the cylinder surface the resistance to mass transport across the separating 
streamlines may play a relatively minor role in the convective process. The data 
presented by Jameson have been plotted together with a line for equation (21) 
with H = 1 on figure 6. It can be seen that the data lie parallel to the prediction 
given by this equation, with the average of the points lying a little below the value 
expected if there were no resistance to transport into the outer bulk of the fluid. 

1 10 

Re,,, -+ 

100 

FIUURE 6. Comparison of analysis for convection by inner streaming with Jameson’s 
(1964) measurements at large Schmidt number. 

A typical value for H can be estimated from the work of Holtsmark et al. (1954) 
corresponding say, to a value of log of - 0.77, typical of these experi- 
ments; the value of H has an insignificant difference from unity. This seems to be 
a more satisfactory result than in the comparison made by Jameson, where the 
approximate solution lay considerably lower than the measurements. Jameson 
noted that his omission of a term in his approximate solution would give a con- 
servative estimate. 

The measurements of Rao et al. (1963) involve a smaller Schmidt number than 
Jameson’s work, and also larger maximum vaIues of (aid). However, the results 
follow the trend of the analysis very well and are of the order of 50-70% of 
expectation from equation (21). An overestimation can be expected since (21) 
accounts only for the resistance to  transport at  the cylinder surface and is based 
on an analysis for small (a/d).  This point is discussed more extensively for the 
data of Lemlich & Rao (below). 

The other data which can be compared with analysis for convection by inner 
streaming are those of Lemlich & Rao. For the measurements made in air, the 
published work does not present sufficient details concerning the amplitude and 
frequency for each data point to permit a direct comparison. The measurements 
of Lemlich & Rao (1965) for a cylinder oscillated in liquids are described in 
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sufficient detail for a comparison to be made. However, there is some question 
as to whether a comparison with the present analysis is adequate, since the mea- 
surements involve values of (a/d) of around unity, while the flow analysis was 
built upon an expansion of the stream function in terms of orders increasing 
successively by a factor of (ald). Further, it is expected that for these measure- 
ments the ratio of the inner thermal boundary-layer thickness to the inner 
streaming boundary-layer thickness is much larger than the ratio of the concen- 
tration boundary-layer thickness to the inner streaming boundary-layer thick- 
ness in the work of Jameson. This would tend to make the asymptotic analysis 
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FIGURE 7. Comparison of analysis for convection by inner streaming with Lemlich & 
Rao's (1965) measurements at moderate Prandtl number. The solid line corresponds to 
60 yo of expectation from equation (21). 

overestimate the heat transfer and to make the resistance to transport across the 
dividing streamline relatively more important. Under these circumstances, it  
might be reasonable to accept a correlation of the heat transfer if it  displayed the 
right form of dependence of heat transfer upon the parameters contained within 
(21), with the numerical coefficient representing an overall resistance to heat 
transport which is perhaps 2 to 3 times the resistance of the innermost thermal 
layer by itself. The results of Lemlich & Rao are displayed in figure 7, where it 
can be seen that the results do indeed follow the trend predicted by the equation 
and have an average coefficient within acceptable limits. It is difficult to identify 
a definite influence of Grashof number in these results, and there have been no 
adequate studies of local details of the flow at finite Grashof numbers. 
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Convection by outer streaming at large streaming Reynolds numbers 

Amongst the measurements in air the results of Fand & Kaye (1961 b) and of 
Fand & Peebles (1962) are most suited to comparison with analysis for convec- 
tion by outer streaming at  large streaming Reynolds number. The results for 
vertical oscillations at  97.5 CIS and horizontal oscillations at 104 CIS are shown on 
figure 8, where the convection number from equation (34) is plotted as a function 
of Gr/Re&,. For measurements represented in this graph the streaming Reynolds 
numbers range from about 75 to 550, the larger being closer to the convection- 
number axis. On figure 8 it can be seen that the results extrapolate to a value a 
little below the expected upper limit of 0-484. This graph demonstrates excellent 
agreement with analysis. 
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GrlRe,,, 

FIGURE 8. Comparison of analysis for convection by outer streaming at  large streaming 
Reynolds numbers with experiment. The target point of approximately 0-484, from equa- 
tion (34), is the lower diamond on the axis. The expectation for small streaming Reynolds 
numbers is shown as the upper diamond on the axis. +, Fand & Kaye (1961b), vertical 
oscillations 97.5 c/s; 0, Fand & Peebles (1962), horizontal oscillations 104 c/s. 

The results of Martinelli & Boelter (1938) were also obtained at large streaming 
Reynolds numbers. Numerical solution at the stagnation point with Pr = 5-0 
leads to a dimensionless temperature gradient at  the wall of 1.55, which can be 
compared to the value of (10/n)fr = 1.78 given for the corresponding quantity by 
the analysis for small streaming Reynolds numbers. This results in an upper 
bound for  re,,, of about 0.011, which compares favourably with figure 7 of 
Martinelli & Boelter, where the ratio %/Re,,, has a value of about 0.009 for 
2 x 103 < Reosc < 8 x lo3. This is a satisfactory correspondence, especially when 
it is realized that the experiments were performed in water, a fluid with transport 
properties significantly different from those of air. The theory is vindicated by 
results from both fluids. 

In  figures 5 and 8 the ratio of Grashof number to the square of Reynolds number 
23 Fluid Mech. 33 



354 Peter D. Richardson 

has been formed using the oscillation Reynolds number rather than the streaming 
Reynolds number. This usage has no significance or importance other than con- 
venience. 

5.  Discussion 
The analysis of the effects of oscillations and vibrations presented here has 

omitted the contribution of buoyancy forces. When buoyancy forces are con- 
sidered in addition to the oscillatory flow, some additional parameters arise: 
these include the ratio h of the natural convection length scale, RIGrf, to the ax. 
boundary-layer thickness, (v /w)&;  and ReESclGr. The solutions obtained here 
should be the asymptotic solutions (as ReE,JGr + co) for the more general prob- 
lem. Thus, for small Re, and h+co the asymptotic solution should correspond 
to equation (13). The solutions for this more general problem are beyond the 
scope of the present paper, but are in the process of computation and will be 
reported later. The major purpose of this paper has been to put convection by 
acoustic streaming into perspective and to examine the analysis of the various 
asymptotic examples for a circular cylinder. It has been found that there is very 
satisfactory agreement with experiment throughout. 

A further generalization of the analysis can readily be seen for body shapes 
other than the circular cylinder. The acoustic streaming on a cylinder is a steady 
flow generated by Reynolds stresses. These Reynolds stresses correspond to 
spatial gradients of the time-average products of the fluctuating velocity com- 
ponents. They can be found in unsteady flow over body shapes other than the 
circular cylinder. For cases where the wavelength of propagation of oscillations is 
small compared with the body size, the necessary gradients can occur even on a 
flat surface. Thus it is possible for acoustic streaming to occur in geometries other 
than the circular cylinder, and the analysis of convection can be extended to 
these geometries. For bodies which are immersed in a fluid and undergo oscilla- 
tions having a wavelength large compared with their size, the fist-order flow 
is computed with the aid of the potential-flow solution for the corresponding 
steady flow problem. In  this way, an unexpected use is found for some classical 
analyses of potential flow. 

It would be useful to investigate the hydrodynamic stability of the flow, and 
also to investigate further the flow and heat transfer processes in the neighbour- 
hood of the separating streamline for the case of convection by inner streaming. 

It is very desirable that studies of the effects of oscillations combined with 
buoyancy should be carried further, because these will permit detailed compari- 
son with experimental data for local heat transfer already available, and tech- 
niques will be developed for analysis of other cases where oscillations are im- 
posed upon an independently-driven flow. A case of special interest is the flow 
in the forward stagnation region of a bluff body, where oscillations are generated 
by a KArmAn street. The oscillation intensity experienced on the cylinder can 
be increased markedly by the application of disturbances in the flow (Gerrard 
1965), so that it may be possible to explain part of the sensitivity of stagnation- 
point heat transfer to free-stream turbulence in this way. Another case of inter- 
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est which may yield to analysis using some of the viewpoints developed here is 
the liquid-phase convection in nucleate pool boiling, where it is known that large 
oscillations occur and can contribute a significant part of the total heat transfer 
from the surface. 

The suggestion that heat transfer is due to acoustic streaming is not new in 
itself. The closest that a previous study has come to the analysis described here is 
probably represented by some investigations where a sound field was propagated 
axially along a heated circular cylinder (e.g. Kubanskii 1962). In  the framework 
of the present paper, Kubanskii’s work was related to an initial influence study 
for average heat transfer (Re&,lGr small), and did not include the case of 
Re&,/Gr --f 00 which forms the main topic here. 
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numbers before its publication in the Journal of Fluid Mechanics. Mr Robert 
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